

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Elasticsearch 1.0.0 documentation

Python Elasticsearch Client

Official low-level client for Elasticsearch. It’s goal is to provide common
ground for all Elasticsearch-related code in Python; because of this it tries
to be opinion-free and very extendable.

Example Usage

from elasticsearch import Elasticsearch
es = Elasticsearch()

doc = {
 'author': 'kimchy',
 'text': 'Elasticsearch: cool. bonsai cool.',
 'timestamp': datetime(2010, 10, 10, 10, 10, 10)
}
res = es.index(index="test-index", doc_type='tweet', id=1, body=doc)
print(res['ok'])

res = es.get(index="test-index", doc_type='tweet', id=1)
print(res['_source'])

es.indices.refresh(index="test-index")

res = es.search(index="test-index", body={"query": {"match_all": {}}})
print("Got %d Hits:" % res['hits']['total'])
for hit in res['hits']['hits']:
 print("%(timestamp)s %(author)s: %(text)s" % hit["_source"])

Features

This client was designed as very thin wrapper around Elasticseach’s REST API to
allow for maximum flexibility. This means that there are no opinions in this
client; it also means that some of the APIs are a little cumbersome to use from
Python. We have created some Helpers to help with this issue.

Persistent Connections

elasticsearch-py uses persistent connections inside of individual connection
pools (one per each configured or sniffed node). Out of the box you can choose
to use http, thrift or an experimental memcached protocol to
communicate with the elasticsearch nodes. See Transport classes for more
information.

The transport layer will create an instance of the selected connection class
per node and keep track of the health of individual nodes - if a node becomes
unresponsive (throwing exceptions while connecting to it) it’s put on a timeout
by the ConnectionPool class and only returned to the
circulation after the timeout is over (or when no live nodes are left). By
default node are randomized before passed into the pool and round-robin
strategy is used for load balancing.

You can customize this behavior by passing parameters to the
Connection Layer API (all keyword arguments to the
Elasticsearch class will be passed through). If what
you want to accomplish is not supported you should be able to create a subclass
of the relevant component and pass it in as a parameter to be used instead of
the default implementation.

Sniffing

The client can be configured to inspect the cluster state to get a list of
nodes upon startup, periodically and/or on failure. See
Transport parameters for details.

Some example configurations:

from elasticsearch import Elasticsearch

by default we don't sniff, ever
es = Elasticsearch()

you can specify to sniff on startup to inspect the cluster and load
balance across all nodes
es = Elasticsearch(["seed1", "seed2"], sniff_on_start=True)

you can also sniff periodically and/or after failure:
es = Elasticsearch(["seed1", "seed2"], sniff_on_start=True, sniff_on_connection_fail=True, sniffer_timeout=60)

Logging

elasticsearch-py uses the standard logging library [http://docs.python.org/3.3/library/logging.html] from python to define
two loggers: elasticsearch and elasticsearch.trace. elasticsearch
is used by the client to log standard activity, depending on the log level.
elasticsearch.trace can be used to log requests to the server in the form
of curl commands using pretty-printed json that can then be executed from
command line. The trace logger doesn’t inherit from the base one - it needs to
be activated separately.

Contents

	API Documentation
	Elasticsearch

	Indices

	Cluster

	Nodes

	Cat

	Connection Layer API
	Transport

	Connection Pool

	Connection Selector

	Connection

	Transport classes
	Connection

	Urllib3HttpConnection

	RequestsHttpConnection

	ThriftConnection

	MemcachedConnection

	Helpers

	Changelog
	1.0.0 (2014-02-11)

	0.4.4 (2013-12-23)

	0.4.3 (2013-10-22)

	0.4.2 (2013-10-08)

	0.4.1 (2013-09-24)

License

Copyright 2013 Elasticsearch

Licensed under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2013, Honza Král.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Elasticsearch 1.0.0 documentation

API Documentation

Note

All the API calls map the raw REST api as closely as possible, including
the distinction between required and optional arguments to the calls. This
means that the code makes distinction between positional and keyword arguments;
we, however, recommend that people use keyword arguments for all calls for
consistency and safety.

Note

for compatibility with the Python ecosystem we use from_ instead of
from and doc_type instead of type as parameter names.

Elasticsearch

	
class elasticsearch.Elasticsearch(hosts=None, transport_class=<class 'elasticsearch.transport.Transport'>, **kwargs)

	Elasticsearch low-level client. Provides a straightforward mapping from
Python to ES REST endpoints.

The instance has attributes cat, cluster, indices, nodes and
snapshot that provide access to instances of
CatClient,
ClusterClient,
IndicesClient,
NodesClient and
SnapshotClient respectively. This is the
preferred (and only supported) way to get access to those classes and their
methods.

Some examples:

create connection to localhost using the ThriftConnection and it's
default port (9500)
es = Elasticsearch(connection_class=ThriftConnection)

create connection that will automatically inspect the cluster to get
the list of active nodes. Start with nodes 'esnode1' and 'esnode2'
es = Elasticsearch(
 ['esnode1', 'esnode2'],
 # sniff before doing anything
 sniff_on_start=True,
 # refresh nodes after a node fails to respond
 sniff_on_connection_fail=True,
 # and also every 60 seconds
 sniffer_timeout=60
)

connect to localhost directly and another node using SSL on port 443
and an url_prefix
es = Elasticsearch([
 {'host': 'localhost'},
 {'host': 'othernode', 'port': 443, 'url_prefix': 'es', 'use_ssl': True},
])

	Parameters:	
	hosts – list of nodes we should connect to. Node should be a
dictionary ({“host”: “localhost”, “port”: 9200}), the entire dictionary
will be passed to the Connection class as
kwargs, or a string in the format of host[:port] which will be
translated to a dictionary automatically. If no value is given the
Connection class defaults will be used.

	transport_class – Transport subclass to use.

	kwargs – any additional arguments will be passed on to the
Transport class and, subsequently, to the
Connection instances.

	
bulk(*args, **kwargs)

	Perform many index/delete operations in a single API call.
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/docs-bulk.html

See the bulk() helper function for a more
friendly API.

	Parameters:	
	body – The operation definition and data (action-data pairs), as
either a newline separated string, or a sequence of dicts to
serialize (one per row).

	index – Default index for items which don’t provide one

	doc_type – Default document type for items which don’t provide one

	consistency – Explicit write consistency setting for the operation

	refresh – Refresh the index after performing the operation

	routing – Specific routing value

	replication – Explicitly set the replication type (default: sync)

	timeout – Explicit operation timeout

	
clear_scroll(*args, **kwargs)

	Clear the scroll request created by specifying the scroll parameter to
search.
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/search-request-scroll.html

	Parameters:	scroll_id – The scroll ID or a list of scroll IDs

	
count(*args, **kwargs)

	Execute a query and get the number of matches for that query.
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/search-count.html

	Parameters:	
	index – A comma-separated list of indices to restrict the results

	doc_type – A comma-separated list of types to restrict the results

	body – A query to restrict the results (optional)

	ignore_indices – When performed on multiple indices, allows to
ignore missing ones (default: none)

	min_score – Include only documents with a specific _score value in the result

	preference – Specify the node or shard the operation should be
performed on (default: random)

	q – Query in the Lucene query string syntax

	routing – Specific routing value

	source – The URL-encoded query definition (instead of using the request body)

	
count_percolate(*args, **kwargs)

	The percolator allows to register queries against an index, and then
send percolate requests which include a doc, and getting back the
queries that match on that doc out of the set of registered queries.
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/search-percolate.html

	Parameters:	
	index – The index of the document being count percolated.

	doc_type – The type of the document being count percolated.

	id – Substitute the document in the request body with a document
that is known by the specified id. On top of the id, the index and
type parameter will be used to retrieve the document from within the
cluster.

	body – The count percolator request definition using the percolate
DSL

	allow_no_indices – Whether to ignore if a wildcard indices
expression resolves into no concrete indices. (This includes _all
string or when no indices have been specified)

	expand_wildcards – Whether to expand wildcard expression to concrete
indices that are open, closed or both., default ‘open’

	ignore_unavailable – Whether specified concrete indices should be
ignored when unavailable (missing or closed)

	percolate_index – The index to count percolate the document into.
Defaults to index.

	percolate_type – The type to count percolate document into. Defaults
to type.

	preference – Specify the node or shard the operation should be
performed on (default: random)

	routing – A comma-separated list of specific routing values

	version – Explicit version number for concurrency control

	version_type – Specific version type

	
create(*args, **kwargs)

	Adds a typed JSON document in a specific index, making it searchable.
Behind the scenes this method calls index(..., op_type=’create’)
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/docs-index_.html

	Parameters:	
	index – The name of the index

	doc_type – The type of the document

	id – Document ID

	body – The document

	consistency – Explicit write consistency setting for the operation

	id – Specific document ID (when the POST method is used)

	parent – ID of the parent document

	percolate – Percolator queries to execute while indexing the document

	refresh – Refresh the index after performing the operation

	replication – Specific replication type (default: sync)

	routing – Specific routing value

	timeout – Explicit operation timeout

	timestamp – Explicit timestamp for the document

	ttl – Expiration time for the document

	version – Explicit version number for concurrency control

	version_type – Specific version type

	
delete(*args, **kwargs)

	Delete a typed JSON document from a specific index based on its id.
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/docs-delete.html

	Parameters:	
	index – The name of the index

	doc_type – The type of the document

	id – The document ID

	consistency – Specific write consistency setting for the operation

	parent – ID of parent document

	refresh – Refresh the index after performing the operation

	replication – Specific replication type (default: sync)

	routing – Specific routing value

	timeout – Explicit operation timeout

	version – Explicit version number for concurrency control

	version_type – Specific version type

	
delete_by_query(*args, **kwargs)

	Delete documents from one or more indices and one or more types based on a query.
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/docs-delete-by-query.html

	Parameters:	
	index – A comma-separated list of indices to restrict the operation

	doc_type – A comma-separated list of types to restrict the operation

	body – A query to restrict the operation

	consistency – Specific write consistency setting for the operation

	ignore_indices – When performed on multiple indices, allows to
ignore missing ones (default: none)

	replication – Specific replication type (default: sync)

	routing – Specific routing value

	source – The URL-encoded query definition (instead of using the request body)

	q – Query in the Lucene query string syntax

	timeout – Explicit operation timeout

	
exists(*args, **kwargs)

	Returns a boolean indicating whether or not given document exists in Elasticsearch.
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/docs-get.html

	Parameters:	
	index – The name of the index

	id – The document ID

	doc_type – The type of the document (uses _all by default to
fetch the first document matching the ID across all types)

	parent – The ID of the parent document

	preference – Specify the node or shard the operation should be
performed on (default: random)

	realtime – Specify whether to perform the operation in realtime or
search mode

	refresh – Refresh the shard containing the document before
performing the operation

	routing – Specific routing value

	
explain(*args, **kwargs)

	The explain api computes a score explanation for a query and a specific
document. This can give useful feedback whether a document matches or
didn’t match a specific query.
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/search-explain.html

	Parameters:	
	index – The name of the index

	doc_type – The type of the document

	id – The document ID

	body – The query definition using the Query DSL

	_source – True or false to return the _source field or not, or a
list of fields to return

	_source_exclude – A list of fields to exclude from the returned
_source field

	_source_include – A list of fields to extract and return from the
_source field

	analyze_wildcard – Specify whether wildcards and prefix queries in
the query string query should be analyzed (default: false)

	analyzer – The analyzer for the query string query

	default_operator – The default operator for query string query (AND
or OR), (default: OR)

	df – The default field for query string query (default: _all)

	fields – A comma-separated list of fields to return in the response

	lenient – Specify whether format-based query failures (such as
providing text to a numeric field) should be ignored

	lowercase_expanded_terms – Specify whether query terms should be lowercased

	parent – The ID of the parent document

	preference – Specify the node or shard the operation should be
performed on (default: random)

	q – Query in the Lucene query string syntax

	routing – Specific routing value

	source – The URL-encoded query definition (instead of using the
request body)

	
get(*args, **kwargs)

	Get a typed JSON document from the index based on its id.
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/docs-get.html

	Parameters:	
	index – The name of the index

	id – The document ID

	doc_type – The type of the document (uses _all by default to
fetch the first document matching the ID across all types)

	_source – True or false to return the _source field or not, or a
list of fields to return

	_source_exclude – A list of fields to exclude from the returned
_source field

	_source_include – A list of fields to extract and return from the
_source field

	fields – A comma-separated list of fields to return in the response

	parent – The ID of the parent document

	preference – Specify the node or shard the operation should be
performed on (default: random)

	realtime – Specify whether to perform the operation in realtime or
search mode

	refresh – Refresh the shard containing the document before
performing the operation

	routing – Specific routing value

	version – Explicit version number for concurrency control

	version_type – Explicit version number for concurrency control

	
get_source(*args, **kwargs)

	Get the source of a document by it’s index, type and id.
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/docs-get.html

	Parameters:	
	index – The name of the index

	doc_type – The type of the document (uses _all by default to
fetch the first document matching the ID across all types)

	id – The document ID

	_source – True or false to return the _source field or not, or a
list of fields to return

	_source_exclude – A list of fields to exclude from the returned
_source field

	_source_include – A list of fields to extract and return from the
_source field

	parent – The ID of the parent document

	preference – Specify the node or shard the operation should be
performed on (default: random)

	realtime – Specify whether to perform the operation in realtime or search mode

	refresh – Refresh the shard containing the document before
performing the operation

	routing – Specific routing value

	version – Explicit version number for concurrency control

	version_type – Explicit version number for concurrency control

	
index(*args, **kwargs)

	Adds or updates a typed JSON document in a specific index, making it searchable.
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/docs-index_.html

	Parameters:	
	index – The name of the index

	doc_type – The type of the document

	body – The document

	id – Document ID

	consistency – Explicit write consistency setting for the operation

	op_type – Explicit operation type (default: index)

	parent – ID of the parent document

	refresh – Refresh the index after performing the operation

	replication – Specific replication type (default: sync)

	routing – Specific routing value

	timeout – Explicit operation timeout

	timestamp – Explicit timestamp for the document

	ttl – Expiration time for the document

	version – Explicit version number for concurrency control

	version_type – Specific version type

	
info(*args, **kwargs)

	Get the basic info from the current cluster.

	
mget(*args, **kwargs)

	Get multiple documents based on an index, type (optional) and ids.
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/docs-multi-get.html

	Parameters:	
	body – Document identifiers; can be either docs (containing full
document information) or ids (when index and type is provided in the URL.

	index – The name of the index

	doc_type – The type of the document

	_source – True or false to return the _source field or not, or a
list of fields to return

	_source_exclude – A list of fields to exclude from the returned
_source field

	_source_include – A list of fields to extract and return from the
_source field

	fields – A comma-separated list of fields to return in the response

	parent – The ID of the parent document

	preference – Specify the node or shard the operation should be
performed on (default: random)

	realtime – Specify whether to perform the operation in realtime or search mode

	refresh – Refresh the shard containing the document before
performing the operation

	routing – Specific routing value

	
mlt(*args, **kwargs)

	Get documents that are “like” a specified document.
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/search-more-like-this.html

	Parameters:	
	index – The name of the index

	doc_type – The type of the document (use _all to fetch the first
document matching the ID across all types)

	id – The document ID

	body – A specific search request definition

	boost_terms – The boost factor

	max_doc_freq – The word occurrence frequency as count: words with
higher occurrence in the corpus will be ignored

	max_query_terms – The maximum query terms to be included in the generated query

	max_word_length – The minimum length of the word: longer words will be ignored

	min_doc_freq – The word occurrence frequency as count: words with
lower occurrence in the corpus will be ignored

	min_term_freq – The term frequency as percent: terms with lower
occurence in the source document will be ignored

	min_word_length – The minimum length of the word: shorter words will be ignored

	mlt_fields – Specific fields to perform the query against

	percent_terms_to_match – How many terms have to match in order to
consider the document a match (default: 0.3)

	routing – Specific routing value

	search_from – The offset from which to return results

	search_indices – A comma-separated list of indices to perform the
query against (default: the index containing the document)

	search_query_hint – The search query hint

	search_scroll – A scroll search request definition

	search_size – The number of documents to return (default: 10)

	search_source – A specific search request definition (instead of
using the request body)

	search_type – Specific search type (eg. dfs_then_fetch, count, etc)

	search_types – A comma-separated list of types to perform the query
against (default: the same type as the document)

	stop_words – A list of stop words to be ignored

	
mpercolate(*args, **kwargs)

	The percolator allows to register queries against an index, and then
send percolate requests which include a doc, and getting back the
queries that match on that doc out of the set of registered queries.
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/search-percolate.html

	Parameters:	
	index – The index of the document being count percolated to use as
default

	doc_type – The type of the document being percolated to use as
default.

	body – The percolate request definitions (header & body pair),
separated by newlines

	allow_no_indices – Whether to ignore if a wildcard indices
expression resolves into no concrete indices. (This includes _all
string or when no indices have been specified)

	expand_wildcards – Whether to expand wildcard expression to concrete
indices that are open, closed or both., default ‘open’

	ignore_unavailable – Whether specified concrete indices should be
ignored when unavailable (missing or closed)

	
msearch(*args, **kwargs)

	Execute several search requests within the same API.
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/search-multi-search.html

	Parameters:	
	body – The request definitions (metadata-search request definition
pairs), as either a newline separated string, or a sequence of
dicts to serialize (one per row).

	index – A comma-separated list of index names to use as default

	doc_type – A comma-separated list of document types to use as default

	search_type – Search operation type

	
mtermvectors(*args, **kwargs)

	Multi termvectors API allows to get multiple termvectors based on an
index, type and id.
http://www.elasticsearch.org/guide/en/elasticsearch/reference/master/docs-multi-termvectors.html

	Parameters:	
	index – The index in which the document resides.

	doc_type – The type of the document.

	body – Define ids, parameters or a list of parameters per document
here. You must at least provide a list of document ids. See
documentation.

	field_statistics – Specifies if document count, sum of document
frequencies and sum of total term frequencies should be returned.
Applies to all returned documents unless otherwise specified in body
“params” or “docs”., default True

	fields – A comma-separated list of fields to return. Applies to all
returned documents unless otherwise specified in body “params” or
“docs”.

	ids – A comma-separated list of documents ids. You must define ids
as parameter or set “ids” or “docs” in the request body

	offsets – Specifies if term offsets should be returned. Applies to
all returned documents unless otherwise specified in body “params”
or “docs”., default True

	parent – Parent id of documents. Applies to all returned documents
unless otherwise specified in body “params” or “docs”.

	payloads – Specifies if term payloads should be returned. Applies to
all returned documents unless otherwise specified in body “params”
or “docs”., default True

	positions – Specifies if term positions should be returned. Applies
to all returned documents unless otherwise specified in body
“params” or “docs”., default True

	preference – Specify the node or shard the operation should be
performed on (default: random) .Applies to all returned documents
unless otherwise specified in body “params” or “docs”.

	routing – Specific routing value. Applies to all returned documents
unless otherwise specified in body “params” or “docs”.

	term_statistics – Specifies if total term frequency and document
frequency should be returned. Applies to all returned documents
unless otherwise specified in body “params” or “docs”., default
False

	
percolate(*args, **kwargs)

	The percolator allows to register queries against an index, and then
send percolate requests which include a doc, and getting back the
queries that match on that doc out of the set of registered queries.
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/search-percolate.html

	Parameters:	
	index – The index of the document being percolated.

	doc_type – The type of the document being percolated.

	id – Substitute the document in the request body with a document
that is known by the specified id. On top of the id, the index and
type parameter will be used to retrieve the document from within the
cluster.

	body – The percolator request definition using the percolate DSL

	allow_no_indices – Whether to ignore if a wildcard indices
expression resolves into no concrete indices. (This includes _all
string or when no indices have been specified)

	expand_wildcards – Whether to expand wildcard expression to concrete
indices that are open, closed or both., default ‘open’

	ignore_unavailable – Whether specified concrete indices should be
ignored when unavailable (missing or closed)

	percolate_index – The index to percolate the document into. Defaults
to index.

	percolate_type – The type to percolate document into. Defaults to
type.

	preference – Specify the node or shard the operation should be
performed on (default: random)

	routing – A comma-separated list of specific routing values

	version – Explicit version number for concurrency control

	version_type – Specific version type

	
ping(*args, **kwargs)

	Returns True if the cluster is up, False otherwise.

	
scroll(*args, **kwargs)

	Scroll a search request created by specifying the scroll parameter.
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/search-request-scroll.html

	Parameters:	
	scroll_id – The scroll ID

	scroll – Specify how long a consistent view of the index should be
maintained for scrolled search

	
search(*args, **kwargs)

	Execute a search query and get back search hits that match the query.
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/search-search.html

	Parameters:	
	index – A comma-separated list of index names to search; use _all
or empty string to perform the operation on all indices

	doc_type – A comma-separated list of document types to search;
leave empty to perform the operation on all types

	body – The search definition using the Query DSL

	_source – True or false to return the _source field or not, or a
list of fields to return

	_source_exclude – A list of fields to exclude from the returned
_source field

	_source_include – A list of fields to extract and return from the
_source field

	analyze_wildcard – Specify whether wildcard and prefix queries
should be analyzed (default: false)

	analyzer – The analyzer to use for the query string

	default_operator – The default operator for query string query (AND
or OR) (default: OR)

	df – The field to use as default where no field prefix is given in
the query string

	explain – Specify whether to return detailed information about
score computation as part of a hit

	fields – A comma-separated list of fields to return as part of a hit

	ignore_indices – When performed on multiple indices, allows to
ignore missing ones (default: none)

	indices_boost – Comma-separated list of index boosts

	lenient – Specify whether format-based query failures (such as
providing text to a numeric field) should be ignored

	lowercase_expanded_terms – Specify whether query terms should be lowercased

	from – Starting offset (default: 0)

	preference – Specify the node or shard the operation should be
performed on (default: random)

	q – Query in the Lucene query string syntax

	routing – A comma-separated list of specific routing values

	scroll – Specify how long a consistent view of the index should be
maintained for scrolled search

	search_type – Search operation type

	size – Number of hits to return (default: 10)

	sort – A comma-separated list of <field>:<direction> pairs

	source – The URL-encoded request definition using the Query DSL
(instead of using request body)

	stats – Specific ‘tag’ of the request for logging and statistical purposes

	suggest_field – Specify which field to use for suggestions

	suggest_mode – Specify suggest mode (default: missing)

	suggest_size – How many suggestions to return in response

	suggest_text – The source text for which the suggestions should be returned

	timeout – Explicit operation timeout

	version – Specify whether to return document version as part of a hit

	
suggest(*args, **kwargs)

	The suggest feature suggests similar looking terms based on a provided
text by using a suggester.
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/search-search.html

	Parameters:	
	index – A comma-separated list of index names to restrict the operation;
use _all or empty string to perform the operation on all indices

	body – The request definition

	ignore_indices – When performed on multiple indices, allows to
ignore missing ones (default: none)

	preference – Specify the node or shard the operation should be
performed on (default: random)

	routing – Specific routing value

	source – The URL-encoded request definition (instead of using request body)

	
termvector(*args, **kwargs)

	Added in 1.
http://www.elasticsearch.org/guide/en/elasticsearch/reference/master/search-termvectors.html

	Parameters:	
	index – The index in which the document resides.

	doc_type – The type of the document.

	id – The id of the document.

	body – Define parameters. See documentation.

	field_statistics – Specifies if document count, sum of document
frequencies and sum of total term frequencies should be returned.,
default True

	fields – A comma-separated list of fields to return.

	offsets – Specifies if term offsets should be returned., default
True

	parent – Parent id of documents.

	payloads – Specifies if term payloads should be returned., default
True

	positions – Specifies if term positions should be returned., default
True

	preference – Specify the node or shard the operation should be
performed on (default: random).

	routing – Specific routing value.

	term_statistics – Specifies if total term frequency and document
frequency should be returned., default False

	
update(*args, **kwargs)

	Update a document based on a script or partial data provided.
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/docs-update.html

	Parameters:	
	index – The name of the index

	doc_type – The type of the document

	id – Document ID

	body – The request definition using either script or partial doc

	consistency – Explicit write consistency setting for the operation

	fields – A comma-separated list of fields to return in the response

	lang – The script language (default: mvel)

	parent – ID of the parent document

	refresh – Refresh the index after performing the operation

	replication – Specific replication type (default: sync)

	retry_on_conflict – Specify how many times should the operation be
retried when a conflict occurs (default: 0)

	routing – Specific routing value

	script – The URL-encoded script definition (instead of using request body)

	timeout – Explicit operation timeout

	timestamp – Explicit timestamp for the document

	ttl – Expiration time for the document

	version – Explicit version number for concurrency control

	version_type – Explicit version number for concurrency control

Indices

	
class elasticsearch.client.IndicesClient(client)

	
	
analyze(*args, **kwargs)

	Perform the analysis process on a text and return the tokens breakdown of the text.
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/indices-analyze.html

	Parameters:	
	index – The name of the index to scope the operation

	body – The text on which the analysis should be performed

	analyzer – The name of the analyzer to use

	field – Use the analyzer configured for this field (instead of
passing the analyzer name)

	filters – A comma-separated list of filters to use for the analysis

	format – Format of the output, default u’detailed’

	index – The name of the index to scope the operation

	prefer_local – With true, specify that a local shard should be
used if available, with false, use a random shard (default: true)

	text – The text on which the analysis should be performed (when
request body is not used)

	tokenizer – The name of the tokenizer to use for the analysis

	
clear_cache(*args, **kwargs)

	Clear either all caches or specific cached associated with one ore more indices.
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/indices-clearcache.html

	Parameters:	
	index – A comma-separated list of index name to limit the operation

	field_data – Clear field data

	fielddata – Clear field data

	fields – A comma-separated list of fields to clear when using the
field_data parameter (default: all)

	filter – Clear filter caches

	filter_cache – Clear filter caches

	filter_keys – A comma-separated list of keys to clear when using
the filter_cache parameter (default: all)

	id – Clear ID caches for parent/child

	id_cache – Clear ID caches for parent/child

	allow_no_indices – Whether to ignore if a wildcard indices
expression resolves into no concrete indices. (This includes _all string or
when no indices have been specified)

	expand_wildcards – Whether to expand wildcard expression to concrete indices
that are open, closed or both.

	ignore_indices – When performed on multiple indices, allows to
ignore missing ones (default: none)

	ignore_unavailable – Whether specified concrete indices should be ignored
when unavailable (missing or closed)

	index – A comma-separated list of index name to limit the operation

	recycler – Clear the recycler cache

	
close(*args, **kwargs)

	Close an index to remove it’s overhead from the cluster. Closed index
is blocked for read/write operations.
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/indices-open-close.html

	Parameters:	
	index – A comma-separated list of indices to delete; use _all or
‘*’ to delete all indices

	master_timeout – Specify timeout for connection to master

	timeout – Explicit operation timeout

	
create(*args, **kwargs)

	Create an index in Elasticsearch.
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/indices-create-index.html

	Parameters:	
	index – The name of the index

	body – The configuration for the index (settings and mappings)

	master_timeout – Specify timeout for connection to master

	timeout – Explicit operation timeout

	
delete(*args, **kwargs)

	Delete an index in Elasticsearch
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/indices-delete-index.html

	Parameters:	
	index – A comma-separated list of indices to delete; use _all or
‘*’ to delete all indices

	master_timeout – Specify timeout for connection to master

	timeout – Explicit operation timeout

	
delete_alias(*args, **kwargs)

	Delete specific alias.
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/indices-aliases.html

	Parameters:	
	index – A comma-separated list of index names (supports wildcards);
use _all for all indices

	name – A comma-separated list of aliases to delete (supports
wildcards); use _all to delete all aliases for the specified indices.

	master_timeout – Specify timeout for connection to master

	timeout – Explicit timestamp for the document

	
delete_mapping(*args, **kwargs)

	Delete a mapping (type) along with its data.
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/indices-delete-mapping.html

	Parameters:	
	index – A comma-separated list of index names (supports wildcard);
use _all for all indices

	doc_type – A comma-separated list of document types to delete
(supports wildcards); use _all to delete all document types in the
specified indices.

	master_timeout – Specify timeout for connection to master

	
delete_template(*args, **kwargs)

	Delete an index template by its name.
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/indices-templates.html

	Parameters:	
	name – The name of the template

	master_timeout – Specify timeout for connection to master

	timeout – Explicit operation timeout

	
delete_warmer(*args, **kwargs)

	Delete an index warmer.
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/indices-warmers.html

	Parameters:	
	index – A comma-separated list of index names to delete warmers from
(supports wildcards); use _all to perform the operation on all indices.

	name – A comma-separated list of warmer names to delete (supports
wildcards); use _all to delete all warmers in the specified indices.

	master_timeout – Specify timeout for connection to master

	
exists(*args, **kwargs)

	Return a boolean indicating whether given index exists.
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/indices-indices-exists.html

	Parameters:	
	index – A list of indices to check

	local – Return local information, do not retrieve the state from
master node (default: false)

	
exists_alias(*args, **kwargs)

	Return a boolean indicating whether given alias exists.
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/indices-aliases.html

	Parameters:	
	name – A comma-separated list of alias names to return

	index – A comma-separated list of index names to filter aliases

	allow_no_indices – Whether to ignore if a wildcard indices
expression resolves into no concrete indices. (This includes _all string or
when no indices have been specified)

	expand_wildcards – Whether to expand wildcard expression to concrete indices
that are open, closed or both.

	ignore_indices – When performed on multiple indices, allows to
ignore missing ones (default: none)

	ignore_unavailable – Whether specified concrete indices should be ignored
when unavailable (missing or closed)

	local – Return local information, do not retrieve the state from
master node (default: false)

	
exists_template(*args, **kwargs)

	Return a boolean indicating whether given template exists.
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/indices-templates.html

	Parameters:	
	name – The name of the template

	local – Return local information, do not retrieve the state from
master node (default: false)

	
exists_type(*args, **kwargs)

	Check if a type/types exists in an index/indices.
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/indices-types-exists.html

	Parameters:	
	index – A comma-separated list of index names; use _all to check
the types across all indices

	doc_type – A comma-separated list of document types to check

	allow_no_indices – Whether to ignore if a wildcard indices
expression resolves into no concrete indices. (This includes _all string or
when no indices have been specified)

	expand_wildcards – Whether to expand wildcard expression to concrete indices
that are open, closed or both.

	ignore_indices – When performed on multiple indices, allows to
ignore missing ones (default: none)

	ignore_unavailable – Whether specified concrete indices should be ignored
when unavailable (missing or closed)

	local – Return local information, do not retrieve the state from
master node (default: false)

	
flush(*args, **kwargs)

	Explicitly flush one or more indices.
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/indices-flush.html

	Parameters:	
	index – A comma-separated list of index names; use _all or empty
string for all indices

	force – Whether a flush should be forced even if it is not
necessarily needed ie. if no changes will be committed to the index.

	full – If set to true a new index writer is created and settings
that have been changed related to the index writer will be refreshed.

	allow_no_indices – Whether to ignore if a wildcard indices
expression resolves into no concrete indices. (This includes _all string or
when no indices have been specified)

	expand_wildcards – Whether to expand wildcard expression to concrete indices
that are open, closed or both.

	ignore_indices – When performed on multiple indices, allows to
ignore missing ones (default: none)

	ignore_unavailable – Whether specified concrete indices should be ignored
when unavailable (missing or closed)

	
get_alias(*args, **kwargs)

	Retrieve a specified alias.
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/indices-aliases.html

	Parameters:	
	name – A comma-separated list of alias names to return

	index – A comma-separated list of index names to filter aliases

	allow_no_indices – Whether to ignore if a wildcard indices
expression resolves into no concrete indices. (This includes _all string or
when no indices have been specified)

	expand_wildcards – Whether to expand wildcard expression to concrete indices
that are open, closed or both.

	ignore_indices – When performed on multiple indices, allows to
ignore missing ones, default u’none’

	ignore_unavailable – Whether specified concrete indices should be ignored
when unavailable (missing or closed)

	local – Return local information, do not retrieve the state from
master node (default: false)

	
get_aliases(*args, **kwargs)

	Retrieve specified aliases
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/indices-aliases.html

	Parameters:	
	index – A comma-separated list of index names to filter aliases

	name – A comma-separated list of alias names to filter

	local – Return local information, do not retrieve the state from
master node (default: false)

	timeout – Explicit operation timeout

	
get_field_mapping(*args, **kwargs)

	Retrieve mapping definition of a specific field.
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/indices-get-field-mapping.html

	Parameters:	
	index – A comma-separated list of index names; use _all or empty
string for all indices

	doc_type – A comma-separated list of document types

	field – A comma-separated list of fields to retrieve the mapping for

	include_defaults – A boolean indicating whether to return default values

	allow_no_indices – Whether to ignore if a wildcard indices
expression resolves into no concrete indices. (This includes _all string or
when no indices have been specified)

	expand_wildcards – Whether to expand wildcard expression to concrete indices
that are open, closed or both.

	ignore_unavailable – Whether specified concrete indices should be ignored
when unavailable (missing or closed)

	local – Return local information, do not retrieve the state from
master node (default: false)

	
get_mapping(*args, **kwargs)

	Retrieve mapping definition of index or index/type.
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/indices-get-mapping.html

	Parameters:	
	index – A comma-separated list of index names; use _all or empty
string for all indices

	doc_type – A comma-separated list of document types

	allow_no_indices – Whether to ignore if a wildcard indices
expression resolves into no concrete indices. (This includes _all string or
when no indices have been specified)

	expand_wildcards – Whether to expand wildcard expression to concrete indices
that are open, closed or both.

	ignore_unavailable – Whether specified concrete indices should be ignored
when unavailable (missing or closed)

	local – Return local information, do not retrieve the state from
master node (default: false)

	
get_settings(*args, **kwargs)

	Retrieve settings for one or more (or all) indices.
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/indices-get-settings.html

	Parameters:	
	index – A comma-separated list of index names; use _all or empty
string to perform the operation on all indices

	name – The name of the settings that should be included

	flat_settings – Return settings in flat format (default: false)

	local – Return local information, do not retrieve the state from
master node (default: false)

	
get_template(*args, **kwargs)

	Retrieve an index template by its name.
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/indices-templates.html

	Parameters:	
	name – The name of the template

	flat_settings – Return settings in flat format (default: false)

	local – Return local information, do not retrieve the state from
master node (default: false)

	
get_warmer(*args, **kwargs)

	Retreieve an index warmer.
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/indices-warmers.html

	Parameters:	
	index – A comma-separated list of index names to restrict the
operation; use _all to perform the operation on all indices

	doc_type – A comma-separated list of document types to restrict the
operation; leave empty to perform the operation on all types

	name – The name of the warmer (supports wildcards); leave empty to get all warmers

	local – Return local information, do not retrieve the state from
master node (default: false)

	
open(*args, **kwargs)

	Open a closed index to make it available for search.
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/indices-open-close.html

	Parameters:	
	index – The name of the index

	master_timeout – Specify timeout for connection to master

	timeout – Explicit operation timeout

	allow_no_indices – Whether to ignore if a wildcard indices
expression resolves into no concrete indices. (This includes _all string or
when no indices have been specified)

	expand_wildcards – Whether to expand wildcard expression to concrete indices
that are open, closed or both.

	ignore_unavailable – Whether specified concrete indices should be ignored
when unavailable (missing or closed)

	
optimize(*args, **kwargs)

	Explicitly optimize one or more indices through an API.
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/indices-optimize.html

	Parameters:	
	index – A comma-separated list of index names; use _all or empty
string to perform the operation on all indices

	flush – Specify whether the index should be flushed after
performing the operation (default: true)

	allow_no_indices – Whether to ignore if a wildcard indices
expression resolves into no concrete indices. (This includes _all string or
when no indices have been specified)

	expand_wildcards – Whether to expand wildcard expression to concrete indices
that are open, closed or both.

	ignore_indices – When performed on multiple indices, allows to
ignore missing ones, default u’none’

	ignore_unavailable – Whether specified concrete indices should be ignored
when unavailable (missing or closed)

	max_num_segments – The number of segments the index should be
merged into (default: dynamic)

	only_expunge_deletes – Specify whether the operation should only
expunge deleted documents

	operation_threading – TODO: ?

	wait_for_merge – Specify whether the request should block until the
merge process is finished (default: true)

	
put_alias(*args, **kwargs)

	Create an alias for a specific index/indices.
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/indices-aliases.html

	Parameters:	
	index – A comma-separated list of index names the alias should
point to (supports wildcards); use _all or omit to perform the
operation on all indices.

	name – The name of the alias to be created or updated

	body – The settings for the alias, such as routing or filter

	master_timeout – Specify timeout for connection to master

	timeout – Explicit timestamp for the document

	
put_mapping(*args, **kwargs)

	Register specific mapping definition for a specific type.
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/indices-put-mapping.html

	Parameters:	
	index – A comma-separated list of index names the alias should
point to (supports wildcards); use _all or omit to perform the
operation on all indices.

	doc_type – The name of the document type

	body – The mapping definition

	ignore_conflicts – Specify whether to ignore conflicts while
updating the mapping (default: false)

	master_timeout – Specify timeout for connection to master

	timeout – Explicit operation timeout

	
put_settings(*args, **kwargs)

	Change specific index level settings in real time.
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/indices-update-settings.html

	Parameters:	
	index – A comma-separated list of index names; use _all or empty
string to perform the operation on all indices

	master_timeout – Specify timeout for connection to master

	body – The index settings to be updated

	flat_settings – Return settings in flat format (default: false)

	
put_template(*args, **kwargs)

	Create an index template that will automatically be applied to new
indices created.
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/indices-templates.html

	Parameters:	
	name – The name of the template

	body – The template definition

	order – The order for this template when merging multiple matching
ones (higher numbers are merged later, overriding the lower numbers)

	master_timeout – Specify timeout for connection to master

	timeout – Explicit operation timeout

	flat_settings – Return settings in flat format (default: false)

	
put_warmer(*args, **kwargs)

	Create an index warmer to run registered search requests to warm up the
index before it is available for search.
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/indices-warmers.html

	Parameters:	
	index – A comma-separated list of index names to register the warmer for;
use _all or empty string to perform the operation on all indices

	name – The name of the warmer

	doc_type – A comma-separated list of document types to register the
warmer for; leave empty to perform the operation on all types

	body – The search request definition for the warmer (query, filters, facets, sorting, etc)

	master_timeout – Specify timeout for connection to master

	
refresh(*args, **kwargs)

	Explicitly refresh one or more index, making all operations performed
since the last refresh available for search.
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/indices-refresh.html

	Parameters:	
	index – A comma-separated list of index names; use _all or empty
string to perform the operation on all indices

	allow_no_indices – Whether to ignore if a wildcard indices
expression resolves into no concrete indices. (This includes _all string or
when no indices have been specified)

	expand_wildcards – Whether to expand wildcard expression to concrete indices
that are open, closed or both.

	ignore_indices – When performed on multiple indices, allows to
ignore missing ones, default u’none’

	ignore_unavailable – Whether specified concrete indices should be ignored
when unavailable (missing or closed)

	force – Force a refresh even if not required

	
segments(*args, **kwargs)

	Provide low level segments information that a Lucene index (shard level) is built with.
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/indices-segments.html

	Parameters:	
	index – A comma-separated list of index names; use _all or empty
string to perform the operation on all indices

	allow_no_indices – Whether to ignore if a wildcard indices
expression resolves into no concrete indices. (This includes _all string or
when no indices have been specified)

	expand_wildcards – Whether to expand wildcard expression to concrete indices
that are open, closed or both.

	ignore_indices – When performed on multiple indices, allows to
ignore missing ones, default u’none’

	ignore_unavailable – Whether specified concrete indices should be ignored
when unavailable (missing or closed)

	human – Whether to return time and byte values in human-readable
format (default: false)

	
snapshot_index(*args, **kwargs)

	Explicitly perform a snapshot through the gateway of one or more indices (backup them).
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/indices-gateway-snapshot.html

	Parameters:	
	index – A comma-separated list of index names; use _all or empty
string for all indices

	allow_no_indices – Whether to ignore if a wildcard indices
expression resolves into no concrete indices. (This includes _all string or
when no indices have been specified)

	expand_wildcards – Whether to expand wildcard expression to concrete indices
that are open, closed or both.

	ignore_indices – When performed on multiple indices, allows to
ignore missing ones (default: none)

	ignore_unavailable – Whether specified concrete indices should be ignored
when unavailable (missing or closed)

	
stats(*args, **kwargs)

	Retrieve statistics on different operations happening on an index.
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/indices-stats.html

	Parameters:	
	index – A comma-separated list of index names; use _all or empty
string to perform the operation on all indices

	metric – A comma-separated list of metrics to display. Possible
values: “_all”, “completion”, “docs”, “fielddata”, “filter_cache”,
“flush”, “get”, “id_cache”, “indexing”, “merge”, “percolate”,
“refresh”, “search”, “segments”, “store”, “warmer”

	completion_fields – A comma-separated list of fields for
completion metric (supports wildcards)

	fielddata_fields – A comma-separated list of fields for fielddata
metric (supports wildcards)

	fields – A comma-separated list of fields for fielddata and
completion metric (supports wildcards)

	groups – A comma-separated list of search groups for search statistics

	allow_no_indices – Whether to ignore if a wildcard indices
expression resolves into no concrete indices. (This includes _all string or
when no indices have been specified)

	expand_wildcards – Whether to expand wildcard expression to concrete indices
that are open, closed or both.

	ignore_indices – When performed on multiple indices, allows to
ignore missing ones (default: none)

	ignore_unavailable – Whether specified concrete indices should be ignored
when unavailable (missing or closed)

	human – Whether to return time and byte values in human-readable format.

	level – Return stats aggregated at cluster, index or shard level.
(“cluster”, “indices” or “shards”, default: “indices”)

	types – A comma-separated list of document types for the indexing
index metric

	
status(*args, **kwargs)

	Get a comprehensive status information of one or more indices.
http://elasticsearch.org/guide/reference/api/admin-indices-_/

	Parameters:	
	index – A comma-separated list of index names; use _all or empty
string to perform the operation on all indices

	allow_no_indices – Whether to ignore if a wildcard indices
expression resolves into no concrete indices. (This includes _all string or
when no indices have been specified)

	expand_wildcards – Whether to expand wildcard expression to concrete indices
that are open, closed or both.

	ignore_indices – When performed on multiple indices, allows to
ignore missing ones, default u’none’

	ignore_unavailable – Whether specified concrete indices should be ignored
when unavailable (missing or closed)

	operation_threading – TODO: ?

	recovery – Return information about shard recovery

	snapshot – TODO: ?

	human – Whether to return time and byte values in human-readable format.

	
update_aliases(*args, **kwargs)

	Update specified aliases.
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/indices-aliases.html

	Parameters:	
	body – The definition of actions to perform

	master_timeout – Specify timeout for connection to master

	timeout – Request timeout

	
validate_query(*args, **kwargs)

	Validate a potentially expensive query without executing it.
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/search-validate.html

	Parameters:	
	index – A comma-separated list of index names to restrict the operation;
use _all or empty string to perform the operation on all indices

	doc_type – A comma-separated list of document types to restrict the
operation; leave empty to perform the operation on all types

	body – The query definition

	explain – Return detailed information about the error

	allow_no_indices – Whether to ignore if a wildcard indices
expression resolves into no concrete indices. (This includes _all string or
when no indices have been specified)

	expand_wildcards – Whether to expand wildcard expression to concrete indices
that are open, closed or both.

	ignore_indices – When performed on multiple indices, allows to
ignore missing ones (default: none)

	ignore_unavailable – Whether specified concrete indices should be ignored
when unavailable (missing or closed)

	operation_threading – TODO: ?

	q – Query in the Lucene query string syntax

	source – The URL-encoded query definition (instead of using the
request body)

Cluster

	
class elasticsearch.client.ClusterClient(client)

	
	
get_settings(*args, **kwargs)

	Get cluster settings.
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/cluster-update-settings.html

	Parameters:	
	flat_settings – Return settings in flat format (default: false)

	master_timeout – Explicit operation timeout for connection to master node

	timeout – Explicit operation timeout

	
health(*args, **kwargs)

	Get a very simple status on the health of the cluster.
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/cluster-health.html

	Parameters:	
	index – Limit the information returned to a specific index

	level – Specify the level of detail for returned information, default u’cluster’

	local – Return local information, do not retrieve the state from master node (default: false)

	master_timeout – Explicit operation timeout for connection to master node

	timeout – Explicit operation timeout

	wait_for_active_shards – Wait until the specified number of shards is active

	wait_for_nodes – Wait until the specified number of nodes is available

	wait_for_relocating_shards – Wait until the specified number of relocating shards is finished

	wait_for_status – Wait until cluster is in a specific state, default None

	
pending_tasks(*args, **kwargs)

	The pending cluster tasks API returns a list of any cluster-level
changes (e.g. create index, update mapping, allocate or fail shard)
which have not yet been executed.
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/cluster-pending.html

	Parameters:	
	local – Return local information, do not retrieve the state from master node (default: false)

	master_timeout – Specify timeout for connection to master

	
put_settings(*args, **kwargs)

	Update cluster wide specific settings.
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/cluster-update-settings.html

	Parameters:	
	body – The settings to be updated. Can be either transient or
persistent (survives cluster restart).

	flat_settings – Return settings in flat format (default: false)

	
reroute(*args, **kwargs)

	Explicitly execute a cluster reroute allocation command including specific commands.
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/cluster-reroute.html

	Parameters:	
	body – The definition of commands to perform (move, cancel, allocate)

	dry_run – Simulate the operation only and return the resulting state

	filter_metadata – Don’t return cluster state metadata (default: false)

	master_timeout – Explicit operation timeout for connection to master node

	timeout – Explicit operation timeout

	
state(*args, **kwargs)

	Get a comprehensive state information of the whole cluster.
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/cluster-state.html

	Parameters:	
	metric – Limit the information returned to the specified metrics.
Possible values: “_all”, “blocks”, “index_templates”, “metadata”,
“nodes”, “routing_table”

	index – A comma-separated list of index names; use _all or empty
string to perform the operation on all indices

	index_templates – A comma separated list to return specific index
templates when returning metadata.

	local – Return local information, do not retrieve the state from master node (default: false)

	master_timeout – Specify timeout for connection to master

	flat_settings – Return settings in flat format (default: false)

	
stats(*args, **kwargs)

	The Cluster Stats API allows to retrieve statistics from a cluster wide
perspective. The API returns basic index metrics and information about
the current nodes that form the cluster.
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/cluster-stats.html

	Parameters:	
	node_id – A comma-separated list of node IDs or names to limit the
returned information; use _local to return information from the node
you’re connecting to, leave empty to get information from all nodes

	flat_settings – Return settings in flat format (default: false)

	human – Whether to return time and byte values in human-readable format.

Nodes

	
class elasticsearch.client.NodesClient(client)

	
	
hot_threads(*args, **kwargs)

	An API allowing to get the current hot threads on each node in the cluster.
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/cluster-nodes-hot-threads.html

	Parameters:	
	node_id – A comma-separated list of node IDs or names to limit the
returned information; use _local to return information from the
node you’re connecting to, leave empty to get information from all
nodes

	type – The type to sample (default: cpu)

	interval – The interval for the second sampling of threads

	snapshots – Number of samples of thread stacktrace (default: 10)

	threads – Specify the number of threads to provide information for
(default: 3)

	
info(*args, **kwargs)

	The cluster nodes info API allows to retrieve one or more (or all) of
the cluster nodes information.
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/cluster-nodes-info.html

	Parameters:	
	node_id – A comma-separated list of node IDs or names to limit the
returned information; use _local to return information from the
node you’re connecting to, leave empty to get information from all
nodes

	metric – A comma-separated list of metrics you wish returned. Leave
empty to return all. Choices are “settings”, “os”, “process”,
“jvm”, “thread_pool”, “network”, “transport”, “http”, “plugin”

	flat_settings – Return settings in flat format (default: false)

	human – Whether to return time and byte values in human-readable
format., default False

	
shutdown(*args, **kwargs)

	The nodes shutdown API allows to shutdown one or more (or all) nodes in
the cluster.
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/cluster-nodes-shutdown.html

	Parameters:	
	node_id – A comma-separated list of node IDs or names to perform the
operation on; use _local to perform the operation on the node
you’re connected to, leave empty to perform the operation on all
nodes

	delay – Set the delay for the operation (default: 1s)

	exit – Exit the JVM as well (default: true)

	
stats(*args, **kwargs)

	The cluster nodes stats API allows to retrieve one or more (or all) of
the cluster nodes statistics.
http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/cluster-nodes-stats.html

	Parameters:	
	node_id – A comma-separated list of node IDs or names to limit the
returned information; use _local to return information from the
node you’re connecting to, leave empty to get information from all
nodes

	metric – Limit the information returned to the specified metrics.
Possible options are: “_all”, “breaker”, “fs”, “http”, “indices”,
“jvm”, “network”, “os”, “process”, “thread_pool”, “transport”

	index_metric – Limit the information returned for indices metric
to the specific index metrics. Isn’t used if indices (or all)
metric isn’t specified. Possible options are: “_all”, “completion”,
“docs”, “fielddata”, “filter_cache”, “flush”, “get”, “id_cache”,
“indexing”, “merge”, “percolate”, “refresh”, “search”, “segments”,
“store”, “warmer”

	completion_fields – A comma-separated list of fields for fielddata
and suggest index metric (supports wildcards)

	fielddata_fields – A comma-separated list of fields for fielddata
index metric (supports wildcards)

	fields – A comma-separated list of fields for fielddata and
completion index metric (supports wildcards)

	groups – A comma-separated list of search groups for search index
metric

	human – Whether to return time and byte values in human-readable
format., default False

	level – Return indices stats aggregated at node, index or shard
level, default ‘node’

	types – A comma-separated list of document types for the indexing
index metric

Cat

	
class elasticsearch.client.CatClient(client)

	
	
aliases(*args, **kwargs)

	http://www.elasticsearch.org/guide/en/elasticsearch/reference/master/cat-aliases.html

	Parameters:	
	name – A comma-separated list of alias names to return

	h – Comma-separated list of column names to display

	help – Return help information, default False

	local – Return local information, do not retrieve the state from
master node (default: false)

	master_timeout – Explicit operation timeout for connection to master
node

	v – Verbose mode. Display column headers, default False

	
allocation(*args, **kwargs)

	Allocation provides a snapshot of how shards have located around the
cluster and the state of disk usage.
http://www.elasticsearch.org/guide/en/elasticsearch/reference/master/cat-allocation.html

	Parameters:	
	node_id – A comma-separated list of node IDs or names to limit the
returned information

	bytes – The unit in which to display byte values

	h – Comma-separated list of column names to display

	help – Return help information, default False

	local – Return local information, do not retrieve the state from
master node (default: false)

	master_timeout – Explicit operation timeout for connection to master
node

	v – Verbose mode. Display column headers, default False

	
count(*args, **kwargs)

	Count provides quick access to the document count of the entire cluster,
or individual indices.
http://www.elasticsearch.org/guide/en/elasticsearch/reference/master/cat-count.html

	Parameters:	
	index – A comma-separated list of index names to limit the returned
information

	h – Comma-separated list of column names to display

	help – Return help information, default False

	local – Return local information, do not retrieve the state from
master node (default: false)

	master_timeout – Explicit operation timeout for connection to master
node

	v – Verbose mode. Display column headers, default False

	
health(*args, **kwargs)

	health is a terse, one-line representation of the same information from
health() API
http://www.elasticsearch.org/guide/en/elasticsearch/reference/master/cat-health.html

	Parameters:	
	h – Comma-separated list of column names to display

	help – Return help information, default False

	local – Return local information, do not retrieve the state from
master node (default: false)

	master_timeout – Explicit operation timeout for connection to master
node

	ts – Set to false to disable timestamping, default True

	v – Verbose mode. Display column headers, default False

	
help(*args, **kwargs)

	A simple help for the cat api.
http://www.elasticsearch.org/guide/en/elasticsearch/reference/master/cat.html

	Parameters:	help – Return help information, default False

	
indices(*args, **kwargs)

	The indices command provides a cross-section of each index.
http://www.elasticsearch.org/guide/en/elasticsearch/reference/master/cat-indices.html

	Parameters:	
	index – A comma-separated list of index names to limit the returned
information

	bytes – The unit in which to display byte values

	h – Comma-separated list of column names to display

	help – Return help information, default False

	local – Return local information, do not retrieve the state from
master node (default: false)

	master_timeout – Explicit operation timeout for connection to master
node

	pri – Set to true to return stats only for primary shards, default
False

	v – Verbose mode. Display column headers, default False

	
master(*args, **kwargs)

	Displays the master’s node ID, bound IP address, and node name.
http://www.elasticsearch.org/guide/en/elasticsearch/reference/master/cat-master.html

	Parameters:	
	h – Comma-separated list of column names to display

	help – Return help information, default False

	local – Return local information, do not retrieve the state from
master node (default: false)

	master_timeout – Explicit operation timeout for connection to master
node

	v – Verbose mode. Display column headers, default False

	
nodes(*args, **kwargs)

	The nodes command shows the cluster topology.
http://www.elasticsearch.org/guide/en/elasticsearch/reference/master/cat-nodes.html

	Parameters:	
	h – Comma-separated list of column names to display

	help – Return help information, default False

	local – Return local information, do not retrieve the state from
master node (default: false)

	master_timeout – Explicit operation timeout for connection to master
node

	v – Verbose mode. Display column headers, default False

	
pending_tasks(*args, **kwargs)

	pending_tasks provides the same information as the
pending_tasks() API
in a convenient tabular format.
http://www.elasticsearch.org/guide/en/elasticsearch/reference/master/cat-pending-tasks.html

	Parameters:	
	h – Comma-separated list of column names to display

	help – Return help information, default False

	local – Return local information, do not retrieve the state from
master node (default: false)

	master_timeout – Explicit operation timeout for connection to master
node

	v – Verbose mode. Display column headers, default False

	
recovery(*args, **kwargs)

	recovery is a view of shard replication.
http://www.elasticsearch.org/guide/en/elasticsearch/reference/master/cat-recovery.html

	Parameters:	
	index – A comma-separated list of index names to limit the returned
information

	bytes – The unit in which to display byte values

	h – Comma-separated list of column names to display

	help – Return help information, default False

	local – Return local information, do not retrieve the state from
master node (default: false)

	master_timeout – Explicit operation timeout for connection to master
node

	v – Verbose mode. Display column headers, default False

	
shards(*args, **kwargs)

	The shards command is the detailed view of what nodes contain which shards.
http://www.elasticsearch.org/guide/en/elasticsearch/reference/master/cat-shards.html

	Parameters:	
	index – A comma-separated list of index names to limit the returned
information

	h – Comma-separated list of column names to display

	help – Return help information, default False

	local – Return local information, do not retrieve the state from
master node (default: false)

	master_timeout – Explicit operation timeout for connection to master
node

	v – Verbose mode. Display column headers, default False

	
thread_pool(*args, **kwargs)

	Get information about thread pools.
http://www.elasticsearch.org/guide/en/elasticsearch/reference/master/cat-thread-pool.html

	Parameters:	
	full_id – Enables displaying the complete node ids (default: ‘false’)

	h – Comma-separated list of column names to display

	help – Return help information (default: ‘false’)

	local – Return local information, do not retrieve the state from
master node (default: false)

	master_timeout – Explicit operation timeout for connection to master
node

	v – Verbose mode. Display column headers (default: ‘false’)

Snapshot
—

	
class elasticsearch.client.SnapshotClient(client)

	
	
create(*args, **kwargs)

	Create a snapshot in repository
http://www.elasticsearch.org/guide/en/elasticsearch/reference/master/modules-snapshots.html

	Parameters:	
	repository – A repository name

	snapshot – A snapshot name

	body – The snapshot definition

	master_timeout – Explicit operation timeout for connection to master
node

	wait_for_completion – Should this request wait until the operation
has completed before returning, default False

	
create_repository(*args, **kwargs)

	Registers a shared file system repository.
http://www.elasticsearch.org/guide/en/elasticsearch/reference/master/modules-snapshots.html

	Parameters:	
	repository – A repository name

	body – The repository definition

	master_timeout – Explicit operation timeout for connection to master
node

	timeout – Explicit operation timeout

	
delete(*args, **kwargs)

	Deletes a snapshot from a repository.
http://www.elasticsearch.org/guide/en/elasticsearch/reference/master/modules-snapshots.html

	Parameters:	
	repository – A repository name

	snapshot – A snapshot name

	master_timeout – Explicit operation timeout for connection to master
node

	
delete_repository(*args, **kwargs)

	Removes a shared file system repository.
http://www.elasticsearch.org/guide/en/elasticsearch/reference/master/modules-snapshots.html

	Parameters:	
	repository – A comma-separated list of repository names

	master_timeout – Explicit operation timeout for connection to master
node

	timeout – Explicit operation timeout

	
get(*args, **kwargs)

	Retrieve information about a snapshot.
http://www.elasticsearch.org/guide/en/elasticsearch/reference/master/modules-snapshots.html

	Parameters:	
	repository – A comma-separated list of repository names

	snapshot – A comma-separated list of snapshot names

	master_timeout – Explicit operation timeout for connection to master
node

	
get_repository(*args, **kwargs)

	Return information about registered repositories.
http://www.elasticsearch.org/guide/en/elasticsearch/reference/master/modules-snapshots.html

	Parameters:	
	repository – A comma-separated list of repository names

	master_timeout – Explicit operation timeout for connection to master
node

	local – Return local information, do not retrieve the state from
master node (default: false)

	
restore(*args, **kwargs)

	Restore a snapshot.
http://www.elasticsearch.org/guide/en/elasticsearch/reference/master/modules-snapshots.html

	Parameters:	
	repository – A repository name

	snapshot – A snapshot name

	body – Details of what to restore

	master_timeout – Explicit operation timeout for connection to master
node

	wait_for_completion – Should this request wait until the operation
has completed before returning, default False

 Copyright 2013, Honza Král.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Elasticsearch 1.0.0 documentation

Connection Layer API

All of the classes reponsible for handling the connection to the Elasticsearch
cluster. The default subclasses used can be overriden by passing parameters to the
Elasticsearch class. All of the arguments to the client
will be passed on to Transport,
ConnectionPool and Connection.

For example if you wanted to use your own implementation of the
ConnectionSelector class you can just pass in the
selector_class parameter.

Transport

	
class elasticsearch.Transport(hosts, connection_class=Urllib3HttpConnection, connection_pool_class=ConnectionPool, nodes_to_host_callback=construct_hosts_list, sniff_on_start=False, sniffer_timeout=None, sniff_on_connection_fail=False, serializer=JSONSerializer(), max_retries=3, ** kwargs)

	Encapsulation of transport-related to logic. Handles instantiation of the
individual connections as well as creating a connection pool to hold them.

Main interface is the perform_request method.

	Parameters:	
	hosts – list of dictionaries, each containing keyword arguments to
create a connection_class instance

	connection_class – subclass of Connection to use

	connection_pool_class – subclass of ConnectionPool to use

	host_info_callback – callback responsible for taking the node information from
/_cluser/nodes, along with already extracted information, and
producing a list of arguments (same as hosts parameter)

	sniff_on_start – flag indicating whether to obtain a list of nodes
from the cluser at startup time

	sniffer_timeout – number of seconds between automatic sniffs

	sniff_on_connection_fail – flag controlling if connection failure triggers a sniff

	sniff_timeout – timeout used for the sniff request - it should be a
fast api call and we are talking potentially to more nodes so we want
to fail quickly.

	serializer – serializer instance

	serializers – optional dict of serializer instances that will be
used for deserializing data coming from the server. (key is the mimetype)

	default_mimetype – when no mimetype is specified by the server
response assume this mimetype, defaults to ‘application/json’

	max_retries – maximum number of retries before an exception is propagated

	send_get_body_as – for GET requests with body this option allows
you to specify an alternate way of execution for environments that
don’t support passing bodies with GET requests. If you set this to
‘POST’ a POST method will be used instead, if to ‘source’ then the body
will be serialized and passed as a query parameter source.

Any extra keyword arguments will be passed to the connection_class
when creating and instance unless overriden by that connection’s
options provided as part of the hosts parameter.

	
add_connection(host)

	Create a new Connection instance and add it to the pool.

	Parameters:	host – kwargs that will be used to create the instance

	
get_connection()

	Retreive a Connection instance from the
ConnectionPool instance.

	
mark_dead(connection)

	Mark a connection as dead (failed) in the connection pool. If sniffing
on failure is enabled this will initiate the sniffing process.

	Parameters:	connection – instance of Connection that failed

	
perform_request(method, url, params=None, body=None)

	Perform the actual request. Retrieve a connection from the connection
pool, pass all the information to it’s perform_request method and
return the data.

If an exception was raised, mark the connection as failed and retry (up
to max_retries times).

If the operation was succesful and the connection used was previously
marked as dead, mark it as live, resetting it’s failure count.

	Parameters:	
	method – HTTP method to use

	url – absolute url (without host) to target

	params – dictionary of query parameters, will be handed over to the
underlying Connection class for serialization

	body – body of the request, will be serializes using serializer and
passed to the connection

	
set_connections(hosts)

	Instantiate all the connections and crate new connection pool to hold
them. Tries to identify unchanged hosts and re-use existing
Connection instances.

	Parameters:	hosts – same as __init__

	
sniff_hosts()

	Obtain a list of nodes from the cluster and create a new connection
pool using the information retrieved.

To extract the node connection parameters use the nodes_to_host_callback.

Connection Pool

	
class elasticsearch.ConnectionPool(connections, dead_timeout=60, selector_class=RoundRobinSelector, randomize_hosts=True, ** kwargs)

	Container holding the Connection instances,
managing the selection process (via a
ConnectionSelector) and dead connections.

It’s only interactions are with the Transport class
that drives all the actions within ConnectionPool.

Initially connections are stored on the class as a list and, along with the
connection options, get passed to the ConnectionSelector instance for
future reference.

Upon each request the Transport will ask for a Connection via the
get_connection method. If the connection fails (it’s perform_request
raises a ConnectionError) it will be marked as dead (via mark_dead) and
put on a timeout (if it fails N times in a row the timeout is exponentially
longer - the formula is default_timeout * 2 ** (fail_count - 1)). When
the timeout is over the connection will be resurrected and returned to the
live pool. A connection that has been peviously marked as dead and
succeedes will be marked as live (it’s fail count will be deleted).

	Parameters:	
	connections – list of tuples containing the
Connection instance and it’s options

	dead_timeout – number of seconds a connection should be retired for
after a failure, increases on consecutive failures

	timeout_cutoff – number of consecutive failures after which the
timeout doesn’t increase

	selector_class – ConnectionSelector
subclass to use

	randomize_hosts – shuffle the list of connections upon arrival to
avoid dog piling effect across processes

	
get_connection()

	Return a connection from the pool using the ConnectionSelector
instance.

It tries to resurrect eligible connections, forces a resurrection when
no connections are availible and passes the list of live connections to
the selector instance to choose from.

Returns a connection instance and it’s current fail count.

	
mark_dead(connection, now=None)

	Mark the connection as dead (failed). Remove it from the live pool and
put it on a timeout.

	Parameters:	connection – the failed instance

	
mark_live(connection)

	Mark connection as healthy after a resurrection. Resets the fail
counter for the connection.

	Parameters:	connection – the connection to redeem

	
resurrect(force=False)

	Attempt to resurrect a connection from the dead pool. It will try to
locate one (not all) eligible (it’s timeout is over) connection to
return to th live pool.

	Parameters:	force – resurrect a connection even if there is none eligible (used
when we have no live connections)

Connection Selector

	
class elasticsearch.ConnectionSelector(opts)

	Simple class used to select a connection from a list of currently live
connection instances. In init time it is passed a dictionary containing all
the connections’ options which it can then use during the selection
process. When the select method is called it is given a list of
currently live connections to choose from.

The options dictionary is the one that has been passed to
Transport as hosts param and the same that is
used to construct the Connection object itself. When the Connection was
created from information retrieved from the cluster via the sniffing
process it will be the dictionary returned by the host_info_callback.

Example of where this would be useful is a zone-aware selector that would
only select connections from it’s own zones and only fall back to other
connections where there would be none in it’s zones.

	Parameters:	opts – dictionary of connection instances and their options

	
select(connections)

	Select a connection from the given list.

	Parameters:	connections – list of live connections to choose from

Connection

	
class elasticsearch.Connection(host='localhost', port=9200, url_prefix='', timeout=10, **kwargs)

	Class responsible for maintaining a connection to an Elasticsearch node. It
holds persistent connection pool to it and it’s main interface
(perform_request) is thread-safe.

Also responsible for logging.

	Parameters:	
	host – hostname of the node (default: localhost)

	port – port to use (default: 9200)

	url_prefix – optional url prefix for elasticsearch

	timeout – default timeout in seconds (default: 10)

	
log_request_fail(method, full_url, body, duration, status_code=None, exception=None)

	Log an unsuccessful API call.

	
log_request_success(method, full_url, path, body, status_code, response, duration)

	Log a successful API call.

 Copyright 2013, Honza Král.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Elasticsearch 1.0.0 documentation

Transport classes

List of transport classes that can be used, simply import your choice and pass
it to the constructor of Elasticsearch as
connection_class. Note that Thrift and Memcached protocols are experimental
and require a plugin to be installed in your cluster as well as additional
dependencies (thrift==0.9 and pylibmc==1.2).

For example to use the thrift connection just import it and use it. The
connection classes are aware of their respective default ports (9500 for
thrift) so there is no need to specify them unless modified:

from elasticsearch import Elasticsearch, ThriftConnection
es = Elasticsearch(connection_class=ThriftConnection)

Connection

	
class elasticsearch.connection.Connection(host='localhost', port=9200, url_prefix='', timeout=10, **kwargs)

	Class responsible for maintaining a connection to an Elasticsearch node. It
holds persistent connection pool to it and it’s main interface
(perform_request) is thread-safe.

Also responsible for logging.

	Parameters:	
	host – hostname of the node (default: localhost)

	port – port to use (default: 9200)

	url_prefix – optional url prefix for elasticsearch

	timeout – default timeout in seconds (default: 10)

Urllib3HttpConnection

	
class elasticsearch.connection.Urllib3HttpConnection(host='localhost', port=9200, http_auth=None, use_ssl=False, maxsize=10, **kwargs)

	Default connection class using the urllib3 library and the http protocol.

	Parameters:	
	http_auth – optional http auth information as either ‘:’ separated
string or a tuple

	use_ssl – use ssl for the connection if True

	maxsize – the maximum number of connections which will be kept open to
this host.

RequestsHttpConnection

	
class elasticsearch.connection.RequestsHttpConnection(host='localhost', port=9200, http_auth=None, use_ssl=False, **kwargs)

	Connection using the requests library.

	Parameters:	
	http_auth – optional http auth information as either ‘:’ separated
string or a tuple

	use_ssl – use ssl for the connection if True

ThriftConnection

	
class elasticsearch.connection.ThriftConnection(host='localhost', port=9500, framed_transport=False, use_ssl=False, **kwargs)

	Connection using the thrift protocol to communicate with elasticsearch.

See https://github.com/elasticsearch/elasticsearch-transport-thrift for additional info.

	Parameters:	framed_transport – use TTransport.TFramedTransport instead of

TTransport.TBufferedTransport

MemcachedConnection

	
class elasticsearch.connection.MemcachedConnection(host='localhost', port=11211, **kwargs)

	Client using the pylibmc python library to communicate with elasticsearch
using the memcached protocol. Requires plugin in the cluster.

See https://github.com/elasticsearch/elasticsearch-transport-memcached for more details.

 Copyright 2013, Honza Král.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Elasticsearch 1.0.0 documentation

Helpers

Collection of simple helper functions that abstract some specifics or the raw
API.

	
elasticsearch.helpers.streaming_bulk(client, actions, chunk_size=500, raise_on_error=False, expand_action_callback=<function expand_action at 0x32c3578>, **kwargs)

	Streaming bulk consumes actions from the iterable passed in and yields
results per action. For non-streaming usecases use
bulk() which is a wrapper around streaming
bulk that returns summary information about the bulk operation once the
entire input is consumed and sent.

This function expects the action to be in the format as returned by
search(), for example:

{
 '_index': 'index-name',
 '_type': 'document',
 '_id': 42,
 '_parent': 5,
 '_ttl': '1d',
 '_source': {
 ...
 }
}

Alternatively, if _source is not present, it will pop all metadata fields
from the doc and use the rest as the document data.

Alternative actions (_op_type field defaults to index) can be sent as
well:

{
 '_op_type': 'delete',
 '_index': 'index-name',
 '_type': 'document',
 '_id': 42,
}
{
 '_op_type': 'update',
 '_index': 'index-name',
 '_type': 'document',
 '_id': 42,
 'doc': {'question': 'The life, universe and everything.'}
}

	Parameters:	
	client – instance of Elasticsearch to use

	actions – iterable containing the actions to be executed

	chunk_size – number of docs in one chunk sent to es (default: 500)

	raise_on_error – raise BulkIndexError containing errors (as .errors
from the execution of the last chunk)

	expand_action_callback – callback executed on each action passed in,
should return a tuple containing the action line and the data line
(None if data line should be omitted).

	
elasticsearch.helpers.bulk(client, actions, stats_only=False, **kwargs)

	Helper for the bulk() api that provides
a more human friendly interface - it consumes an iterator of actions and
sends them to elasticsearch in chunks. It returns a tuple with summary
information - number of successfully executed actions and either list of
errors or number of errors if stats_only is set to True.

See streaming_bulk() for more information
and accepted formats.

	Parameters:	
	client – instance of Elasticsearch to use

	actions – iterator containing the actions

	stats_only – if True only report number of successful/failed
operations instead of just number of successful and a list of error responses

Any additional keyword arguments will be passed to
streaming_bulk() which is used to execute
the operation.

	
elasticsearch.helpers.scan(client, query=None, scroll='5m', **kwargs)

	Simple abstraction on top of the
scroll() api - a simple iterator that
yields all hits as returned by underlining scroll requests.

	Parameters:	
	client – instance of Elasticsearch to use

	query – body for the search() api

	scroll – Specify how long a consistent view of the index should be
maintained for scrolled search

Any additional keyword arguments will be passed to the initial
search() call.

	
elasticsearch.helpers.reindex(client, source_index, target_index, target_client=None, chunk_size=500, scroll='5m')

	Reindex all documents from one index to another, potentially (if
target_client is specified) on a different cluster.

Note

This helper doesn’t transfer mappings, just the data.

	Parameters:	
	client – instance of Elasticsearch to use (for
read if target_client is specified as well)

	source_index – index (or list of indices) to read documents from

	target_index – name of the index in the target cluster to populate

	target_client – optional, is specified will be used for writing (thus
enabling reindex between clusters)

	chunk_size – number of docs in one chunk sent to es (default: 500)

	scroll – Specify how long a consistent view of the index should be
maintained for scrolled search

 Copyright 2013, Honza Král.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Elasticsearch 1.0.0 documentation

Changelog

1.0.0 (2014-02-11)

Elasticsearch 1.0 compatibility. See 0.4.X releases (and 0.4 branch) for code
compatible with 0.90 elasticsearch.

	major breaking change - compatible with 1.0 elasticsearch releases only!

	Add an option to change the timeout used for sniff requests (sniff_timeout).

	empty responses from the server are now returned as empty strings instead of None

	get_alias now has name as another optional parameter due to issue #4539
in es repo. Note that the order of params have changed so if you are not
using keyword arguments this is a breaking change.

0.4.4 (2013-12-23)

	helpers.bulk_index renamed to helpers.bulk (alias put in place for
backwards compatibility, to be removed in future versions)

	Added helpers.streaming_bulk to consume an iterator and yield results per
operation

	helpers.bulk and helpers.streaming_bulk are no longer limitted to just
index operations.

	unicode body (for incices.analyze for example) is now handled correctly

	changed perform_request on Connection classes to return headers as well.
This is a backwards incompatible change for people who have developed their own
connection class.

	changed deserialization mechanics. Users who provided their own serializer
that didn’t extend JSONSerializer need to specify a mimetype class
attribute.

	minor bug fixes

0.4.3 (2013-10-22)

	Fixes to helpers.bulk_index, better error handling

	More benevolent hosts argument parsing for Elasticsearch

	requests no longer required (nor recommended) for install

0.4.2 (2013-10-08)

	ignore param acceted by all APIs

	Fixes to helpers.bulk_index

0.4.1 (2013-09-24)

Initial release.

 Copyright 2013, Honza Král.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	Elasticsearch 1.0.0 documentation

 Python Module Index

 e

 			

 		
 e	

 	[image: -]
 	
 elasticsearch	

 	
 	
 elasticsearch.client	

 	
 	
 elasticsearch.connection	

 	
 	
 elasticsearch.helpers	

 Copyright 2013, Honza Král.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	Elasticsearch 1.0.0 documentation

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V

A

 	

 	add_connection() (elasticsearch.Transport method)

 	aliases() (elasticsearch.client.CatClient method)

 	

 	allocation() (elasticsearch.client.CatClient method)

 	analyze() (elasticsearch.client.IndicesClient method)

B

 	

 	bulk() (elasticsearch.Elasticsearch method)

 	

 	(in module elasticsearch.helpers)

C

 	

 	CatClient (class in elasticsearch.client)

 	clear_cache() (elasticsearch.client.IndicesClient method)

 	clear_scroll() (elasticsearch.Elasticsearch method)

 	close() (elasticsearch.client.IndicesClient method)

 	ClusterClient (class in elasticsearch.client)

 	Connection (class in elasticsearch)

 	

 	(class in elasticsearch.connection)

 	

 	ConnectionPool (class in elasticsearch)

 	ConnectionSelector (class in elasticsearch)

 	count() (elasticsearch.client.CatClient method)

 	

 	(elasticsearch.Elasticsearch method)

 	count_percolate() (elasticsearch.Elasticsearch method)

 	create() (elasticsearch.client.IndicesClient method)

 	

 	(elasticsearch.Elasticsearch method)

 	(elasticsearch.client.SnapshotClient method)

 	create_repository() (elasticsearch.client.SnapshotClient method)

D

 	

 	delete() (elasticsearch.client.IndicesClient method)

 	

 	(elasticsearch.Elasticsearch method)

 	(elasticsearch.client.SnapshotClient method)

 	delete_alias() (elasticsearch.client.IndicesClient method)

 	delete_by_query() (elasticsearch.Elasticsearch method)

 	delete_mapping() (elasticsearch.client.IndicesClient method)

 	

 	delete_repository() (elasticsearch.client.SnapshotClient method)

 	delete_template() (elasticsearch.client.IndicesClient method)

 	delete_warmer() (elasticsearch.client.IndicesClient method)

E

 	

 	Elasticsearch (class in elasticsearch)

 	elasticsearch (module), [1]

 	elasticsearch.client (module)

 	elasticsearch.connection (module)

 	elasticsearch.helpers (module)

 	

 	exists() (elasticsearch.client.IndicesClient method)

 	

 	(elasticsearch.Elasticsearch method)

 	exists_alias() (elasticsearch.client.IndicesClient method)

 	exists_template() (elasticsearch.client.IndicesClient method)

 	exists_type() (elasticsearch.client.IndicesClient method)

 	explain() (elasticsearch.Elasticsearch method)

F

 	

 	flush() (elasticsearch.client.IndicesClient method)

G

 	

 	get() (elasticsearch.client.SnapshotClient method)

 	

 	(elasticsearch.Elasticsearch method)

 	get_alias() (elasticsearch.client.IndicesClient method)

 	get_aliases() (elasticsearch.client.IndicesClient method)

 	get_connection() (elasticsearch.ConnectionPool method)

 	

 	(elasticsearch.Transport method)

 	get_field_mapping() (elasticsearch.client.IndicesClient method)

 	get_mapping() (elasticsearch.client.IndicesClient method)

 	

 	get_repository() (elasticsearch.client.SnapshotClient method)

 	get_settings() (elasticsearch.client.ClusterClient method)

 	

 	(elasticsearch.client.IndicesClient method)

 	get_source() (elasticsearch.Elasticsearch method)

 	get_template() (elasticsearch.client.IndicesClient method)

 	get_warmer() (elasticsearch.client.IndicesClient method)

H

 	

 	health() (elasticsearch.client.CatClient method)

 	

 	(elasticsearch.client.ClusterClient method)

 	help() (elasticsearch.client.CatClient method)

 	

 	hot_threads() (elasticsearch.client.NodesClient method)

I

 	

 	index() (elasticsearch.Elasticsearch method)

 	indices() (elasticsearch.client.CatClient method)

 	

 	IndicesClient (class in elasticsearch.client)

 	info() (elasticsearch.client.NodesClient method)

 	

 	(elasticsearch.Elasticsearch method)

L

 	

 	log_request_fail() (elasticsearch.Connection method)

 	

 	log_request_success() (elasticsearch.Connection method)

M

 	

 	mark_dead() (elasticsearch.ConnectionPool method)

 	

 	(elasticsearch.Transport method)

 	mark_live() (elasticsearch.ConnectionPool method)

 	master() (elasticsearch.client.CatClient method)

 	MemcachedConnection (class in elasticsearch.connection)

 	mget() (elasticsearch.Elasticsearch method)

 	

 	mlt() (elasticsearch.Elasticsearch method)

 	mpercolate() (elasticsearch.Elasticsearch method)

 	msearch() (elasticsearch.Elasticsearch method)

 	mtermvectors() (elasticsearch.Elasticsearch method)

N

 	

 	nodes() (elasticsearch.client.CatClient method)

 	

 	NodesClient (class in elasticsearch.client)

O

 	

 	open() (elasticsearch.client.IndicesClient method)

 	

 	optimize() (elasticsearch.client.IndicesClient method)

P

 	

 	pending_tasks() (elasticsearch.client.CatClient method)

 	

 	(elasticsearch.client.ClusterClient method)

 	percolate() (elasticsearch.Elasticsearch method)

 	perform_request() (elasticsearch.Transport method)

 	ping() (elasticsearch.Elasticsearch method)

 	put_alias() (elasticsearch.client.IndicesClient method)

 	

 	put_mapping() (elasticsearch.client.IndicesClient method)

 	put_settings() (elasticsearch.client.ClusterClient method)

 	

 	(elasticsearch.client.IndicesClient method)

 	put_template() (elasticsearch.client.IndicesClient method)

 	put_warmer() (elasticsearch.client.IndicesClient method)

R

 	

 	recovery() (elasticsearch.client.CatClient method)

 	refresh() (elasticsearch.client.IndicesClient method)

 	reindex() (in module elasticsearch.helpers)

 	RequestsHttpConnection (class in elasticsearch.connection)

 	

 	reroute() (elasticsearch.client.ClusterClient method)

 	restore() (elasticsearch.client.SnapshotClient method)

 	resurrect() (elasticsearch.ConnectionPool method)

S

 	

 	scan() (in module elasticsearch.helpers)

 	scroll() (elasticsearch.Elasticsearch method)

 	search() (elasticsearch.Elasticsearch method)

 	segments() (elasticsearch.client.IndicesClient method)

 	select() (elasticsearch.ConnectionSelector method)

 	set_connections() (elasticsearch.Transport method)

 	shards() (elasticsearch.client.CatClient method)

 	shutdown() (elasticsearch.client.NodesClient method)

 	

 	snapshot_index() (elasticsearch.client.IndicesClient method)

 	SnapshotClient (class in elasticsearch.client)

 	sniff_hosts() (elasticsearch.Transport method)

 	state() (elasticsearch.client.ClusterClient method)

 	stats() (elasticsearch.client.ClusterClient method)

 	

 	(elasticsearch.client.IndicesClient method)

 	(elasticsearch.client.NodesClient method)

 	status() (elasticsearch.client.IndicesClient method)

 	streaming_bulk() (in module elasticsearch.helpers)

 	suggest() (elasticsearch.Elasticsearch method)

T

 	

 	termvector() (elasticsearch.Elasticsearch method)

 	thread_pool() (elasticsearch.client.CatClient method)

 	

 	ThriftConnection (class in elasticsearch.connection)

 	Transport (class in elasticsearch)

U

 	

 	update() (elasticsearch.Elasticsearch method)

 	update_aliases() (elasticsearch.client.IndicesClient method)

 	

 	Urllib3HttpConnection (class in elasticsearch.connection)

V

 	

 	validate_query() (elasticsearch.client.IndicesClient method)

 Copyright 2013, Honza Král.
 Created using Sphinx 1.2.2.

 _static/ajax-loader.gif

_static/up.png

_static/file.png

_static/up-pressed.png

_static/comment.png

_static/down.png

_static/plus.png

_static/down-pressed.png

search.html

 Navigation

 		
 index

 		
 modules |

 		Elasticsearch 1.0.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Honza Král.
 Created using Sphinx 1.2.2.

_static/minus.png

_static/comment-bright.png

_static/comment-close.png

